
Influence of the gravitational field on the quantum-nondemolition measurement of atomic

momentum in the dispersive Jaynes–Cummings model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 11065

(http://iopscience.iop.org/0305-4470/39/35/008)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 11065–11074 doi:10.1088/0305-4470/39/35/008

Influence of the gravitational field on the
quantum-nondemolition measurement of atomic
momentum in the dispersive Jaynes–Cummings model

M Mohammadi1,2, M H Naderi3 and M Soltanolkotabi3

1 Physics Department, Science and Research Campus Azad University of Tehran, Tehran, Iran
2 Physics Department, Shahreza Islamic Azad University, Shahreza, Isfahan, Iran
3 Quantum Optics Group, University of Isfahan, Isfahan, Iran

E-mail: majid471702@yahoo.com, mhnaderi2001@yahoo.com and soltan@sci.ui.ac.ir

Received 30 May 2006, in final form 24 July 2006
Published 11 August 2006
Online at stacks.iop.org/JPhysA/39/11065

Abstract
We present a theoretical scheme based on an su(2) dynamical algebraic
structure to investigate the influence of a homogeneous gravitational field
on the quantum-nondemolition measurement of atomic momentum in the
dispersive Jaynes–Cummings model. In the dispersive Jaynes–Cummings
model, when detuning is large and the atomic motion is in a propagating light
wave, we consider a two-level atom interacting with the quantized cavity field
in the presence of a homogeneous gravitational field. We derive an effective
Hamiltonian describing the dispersive atom–field interaction in the presence of
the gravitational field. We investigate the influence of the gravitational field
on both the momentum filter and momentum distribution. Particularly, we find
that the gravitational field decreases both the tooth spacing of momentum and
the tooth width of momentum.

PACS numbers: 42.50.Ct, 42.50.Vk, 03.65.Ta, 03.75.Be

1. Introduction

Among the models describing the interaction between light and matter, the Jaynes–Cummings
model (JCM) [1] seems to be ideal. The JCM describes the interaction between a two-level
atom and a single quantized mode of the electromagnetic field in a lossless cavity within
the rotating wave approximation (RWA). This is the simplest model of the radiation–matter
interaction. It is simple enough to be exactly solved on the one hand and complicated enough
to exhibit many fascinating quantum features on the other hand. These pure quantum effects
include quantum collapses and revivals of atomic inversion [2], squeezing of the radiation field
[3], atomic dipole squeezing [4], vacuum Rabi oscillation [5] and dynamical entangling and

0305-4470/06/3511065+10$30.00 © 2006 IOP Publishing Ltd Printed in the UK 11065

http://dx.doi.org/10.1088/0305-4470/39/35/008
mailto:majid471702@yahoo.com
mailto:mhnaderi2001@yahoo.com
mailto:soltan@sci.ui.ac.ir
http://stacks.iop.org/JPhysA/39/11065


11066 M Mohammadi et al

disentangling of the atom–field system in the course of time [6–8]. Further interest in the JCM
comes from the fact that its theoretical predictions have been extensively used in the context
of quantum information [9], atoms and ions trapping [10, 11] and quantum-nondemolition
(QND) measurements [12].

In a general QND measurement [13], an observable signal of a quantum system is
measured by detecting a change in an observable of the probe system coupled to the quantum
system during the measurement time, without perturbing the subsequent evolution of the
observable signal. We can therefore make a sequence of precise measurements of an observable
signal such that the result of each measurement is completely predictable from the result of
the preceding measurement. Such an observable is called a QND observable. Original QND
ideas involved a dispersive coupling of the signal field to a material probe [14]. The QND
method is quite generally based on dispersive and nonlinear effects. Methods to avoid the back
action of the measurement on the detected observable have been proposed and implemented
in the optical domain [15, 16]. These experiments are the realization of the QND schemes
introduced in [14]. They rely on nonlinear coupling of the signal field to be measured with
a probe field whose phase is altered by a quantity depending on the number of photons in
the signal beam. In a paper by Sleator and Wilkens [17] a complementary scheme has been
proposed in which a quadrature component of a propagating laser wave acts as the probe for
the QND measurement of the atomic momentum. It is based on the Doppler effect on the
component of atomic momentum along the propagation direction of the light field.

On the other hand, experimentally, atomic beams with very low velocities are generated
in laser cooling and atomic interferometry [18]. It is obvious that for atoms moving with a
velocity of a few centimetres or metres per second for a time period of several milliseconds or
more, the influence of Earth’s acceleration becomes important and cannot be neglected [19].
For this reason it is of interest to study the temporal evolution of a moving atom simultaneously
exposed to the gravitational field and a single-mode travelling wave field. Since any quantum
optical experiment in the laboratory is actually made in a non-inertial frame it is important
to estimate the influence of Earth’s acceleration on the outcome of the experiment. Recently,
a semiclassical description of a two-level atom interacting with a running laser wave in a
gravitational field has been studied [20].

In this paper we investigate a complementary scheme based on an su(2) dynamical
algebraic structure to investigate the influence of the gravity on the QND measurement of
atomic momentum in the dispersive JCM. In section 2, we present a full quantum treatment
of the internal and external dynamics of the atom and find an alternative su(2) dynamical
algebraic structure within the system. Based on this su(2) structure, we obtain an effective
Hamiltonian describing the dispersive atom–field interaction in the presence of a gravitational
field. Recently, the optical Schrödinger cat states have been realized in the dispersive JCM
[21]. Also, these states have been verified experimentally, by Auffeves and coworkers, for a
two-level atom interacting with a single mode of the electromagnetic field in the dispersive
JCM [22]. In the dispersive JCM, the atom is in ground state and detuning is large, so one
can neglect spontaneous emission. In section 3 we investigate the dynamical evolution of
the system and show that how the gravitational field may affect the dynamical properties of
the dispersive JCM. In section 4 we study the influence of gravitational field on the QND
measurement of atomic momentum. Finally, we summarize our conclusions in section 5.

2. Dispersive Jaynes–Cummings model in the presence of gravitational field

In the dispersive JCM, we assume that the atom is in its ground state initially and we consider
the case of large detuning so that the excited state of the atom is almost never populated, so
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we neglect spontaneous emission. The importance of dispersive JCM is because of its use in
the generation of Schrödinger cat states with superposition of coherent states. These states
have been prepared in various contexts. A great variety of methods have been proposed for
generation of such states, for example, in a Mach–Zehnder interferometer [23] and one of the
first schemes due to Yurke and Stoler [24] who showed that a coherent state propagating in a
Kerr medium could lead to a Schrödinger cat state.

The system we consider here is a moving two-level atom exposed simultaneously to a
single-mode travelling wave field and a homogeneous gravitational field. We take into account
the atomic motion along the position vector �̂x, so the evolution of the atom–field system in
the presence of gravitational field and in the rotating wave approximation is governed by the
Hamiltonian

Ĥ = p̂2

2M
− M �g · �̂x + h̄ωc

(
â†â +

1

2

)
+

1

2
h̄ωegσ̂z + h̄λ[exp(−i�q · �̂x)â†σ̂− + exp(i�q · �̂x)σ̂+â],

(1)

where â and â† denote, respectively, the annihilation and creation operators of a single-mode
travelling wave with frequency ωc, �q is the wave vector of the running wave and σ̂± denote
the raising and lowering operators of the two-level atom with electronic levels |e〉, |g〉 and
Bohr transition frequency ωeg . The atom–field coupling is given by the parameter λ and
�̂p, �̂x denote, respectively, the momentum and position operators of the atomic centre-of-mass
motion and g is Earth’s gravitational acceleration. We find that an alternative representation of
su(2) algebra arises naturally from the system. In this manner, we construct a representation
of su(2) algebra based on the generalized algebra and the Pauli matrices. From Hamiltonian
(1), it is apparent that there exists an operator K̂ which is constant of motion

K̂ = â†â + |e〉〈e|. (2)

In addition, the operator âσ̂+ = â|e〉〈g| commutes with K̂ . Now we introduce the following
operators:

Ŝ0 = 1

2
(|e〉〈e| − |g〉〈g|), Ŝ+ = â|e〉〈g| 1√

K̂
, Ŝ− = 1√

K̂
|g〉〈e|â†. (3)

We can show that the operators Ŝ0, Ŝ± satisfy the following commutation relations:

[Ŝ0, Ŝ±] = ±Ŝ±, [Ŝ−, Ŝ+] = −2Ŝ0, (4)

where Ŝ0, Ŝ± are the generators of the su(2) algebra. In terms of su(2) generators, the
Hamiltonian (1) can be rewritten as

Ĥ = p̂2

2M
− M �g · �̂x + h̄ωcK̂ +

1

2
h̄�Ŝ0 + h̄λ

√
K̂(exp(−i�q · �̂x)Ŝ− + exp(i�q · �̂x)Ŝ+), (5)

where

� = ωeg − ωc, (6)

is the usual detuning parameter.
Now we start to find the exact solution for the dynamical evolution of the total system

governed by the Hamiltonian (5). The corresponding time evolution operator can be expressed
as

û(t) = exp

(
iM �g · �̂xt

h̄

)
v̂†ûe(t)v̂, (7)

where
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v̂ = exp(−i�q · �̂xŜ0), (8)

ûe = exp

(
−iĤ et

h̄

)
. (9)

It can be shown that the operator ûe(t) satisfies an effective Schrödinger equation governed
by an effective Hamiltonian Ĥ e, that is

ih̄
∂ûe

∂t
= Ĥ eûe, (10)

where

Ĥ e = p̂2

2M
− h̄�̂( �̂p, �g)Ŝ0 +

1

2
Mg2t2 + �g · �̂pt + h̄λ(

√
K̂Ŝ− +

√
K̂Ŝ+) + Ĥ 0, (11)

with

Ĥ 0 = h̄ωcK̂ − h̄

2
�Ŝ0 − q2h̄2

2M
Ŝ0 +

q2h̄2

8M
, (12)

and the operator

�̂( �̂p, �g) = ωc −
(

ωeg +
�q · �̂p
M

+ �q · �gt +
h̄q2

2M

)
, (13)

has been introduced as the Doppler shift detuning at time t. Therefore, due to the Doppler

shift of �q· �̂p
M

, recoil frequency ωrec = h̄q2

2M
and gravitational field, the detuning between the

cavity field and the atomic transition frequency has been modified. The relevant time scale
introduced by the gravitational influence is

τa = 1√�q · �g . (14)

For an optical laser with |�q| � 107 m−1 and Earth’s acceleration | �g| = 9.8 m s−2, τa is
about 10−4 s. We remark that �̂( �̂p, �g) does only depend on the product �q · �g, so that the
influence of the gravitational acceleration on the internal evolution vanishes if the acceleration
is perpendicular to the travelling field. Now we apply the interaction picture, i.e.,

ûe = exp

(
−itĤ 0

h̄

)
ˆ̃u, (15)

such that

ih̄
∂ ˆ̃u

∂t
= ˆ̃H ˆ̃u, (16)

where

ˆ̃H = p̂2

2M
− h̄�̂( �̂p, �g)Ŝ0 +

1

2
Mg2t2 + �̂p · �gt + h̄(κ̂(t)

√
K̂Ŝ− + κ̂∗(t)

√
K̂Ŝ+), (17)

and κ̂(t) is an effective coupling coefficient

κ̂(t) = λ exp

(
it

2

(
�̂( �̂p, �g) +

h̄q2

M

))
. (18)

In the limit of very small values of |〈�̂( �̂p, �g)〉| and h̄q2

M
, the coefficient κ̂(t) is independent of

time. As it stands, the effective Hamiltonian (17) has the form of the Hamiltonian of the JCM,
the only modification being the dependence of the detuning on the conjugate momentum and
the gravitational field.

Now we consider the JCM in the dispersive limit and we obtain an effective Hamiltonian.
In this limit, we assume that the atom is in its ground state initially and we consider the case
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of large detuning, |δ| � κ
√

〈â†â〉, with δ ≡ ωc − ωeg − ωrec. In this case, the excited state
of the atom is almost never populated, so we neglect atomic spontaneous emission. In the
interaction picture the transformed Hamiltonian (17) takes the following form:

ˆ̃H int = exp

(
−i ˆ̃H 0t

h̄

)
ˆ̃HI exp

(
i ˆ̃H 0t

h̄

)
, (19)

where

ˆ̃H 0 = −h̄�̂( �̂p, �g)Ŝ0, (20)

ˆ̃HI = h̄(κ̂
√

K̂Ŝ− + κ̂∗
√

K̂Ŝ+) + Ĥ ( �̂p, �g), (21)

Ĥ ( �̂p, �g) = p̂2

2M
+ �̂p · �gt +

1

2
Mg2t2. (22)

Therefore we obtain
ˆ̃H int = h̄(κ̂

√
K̂Ŝ− exp(−it�̂( �̂p, �g)) + κ̂∗

√
K̂Ŝ+ exp(it�̂( �̂p, �g))) + Ĥ ( �̂p, �g). (23)

Following Schleish [25], in the large detuning approximation, we arrive at the following
effective Hamiltonian:

Ĥ eff = Ĥ ( �̂p, �g) + h̄�̂( �̂p, �g)â†â, (24)

where

�̂( �̂p, �g) = |κ̂|2
�̂( �̂p, �g)

, (25)

is the momentum-dependent frequency of the harmonic oscillator and identified as the Doppler-
modified ac stark shift of the atom–field interaction.

3. Dynamical evolution

In section 2, we obtained an effective Hamiltonian for the atom–field system in the presence
of the gravitational field in the dispersive regime. In this section, we investigate the dynamical
evolution of the system. We will show how the gravitational field may affect the dispersive
JCM. We will also investigate the dispersive JCM, in the short- and long-time limits. The
Schrödinger equation reads

ih̄
∂|ψ〉
∂t

= Ĥ eff|ψ〉, (26)

where

|ψ(t)〉 = |ψg(t)〉 ⊗ |g〉. (27)

In the dispersive regime, we define |ψg(t)〉 as the state of the atomic centre-of-mass motion
and the cavity field. We assume at t = 0, the atom–field system is described by the product
state where the cavity field is initially prepared in a coherent state |α〉. We apply evolution
operator

û(t) = exp

(−i

h̄

∫ t

0
Ĥ eff(t

′) dt ′
)

, (28)

on the initial state

|ψg(t = 0)〉 =
(∫

d3p φg(�p)| �p〉
)

⊗ |α〉, (29)

where φg(�p) is the probability amplitude for the centre-of-mass motion of the ground-state
atom in the momentum representation, �̂p| �p〉 = �p| �p〉. When the atom leaves the cavity after
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an interaction time τ , the state vector has evolved into the entangled state

|ψg(t = τ)〉 = û(t = τ)|ψg(t = 0)〉

=
∫

d3p exp

(−iτp2

2Mh̄

)
exp

(−i�p · �gτ 2

2h̄

)
exp

(−iMg2τ 3

6h̄

)
φg(�p)| �p〉

⊗ |α exp(−i�(�p, �g)τ)〉. (30)

We now consider the gravitational influence on the dynamical evolution of the system for
two limiting cases. The first, in the limit of small gravitational influence, t � τa , means very
small �q · �g, i.e., the momentum transfer from the radiation field to the atom is only slightly
altered by the gravitational acceleration because the latter is very small or nearly perpendicular
to the travelling wave. In this limit, the state vector reads

|ψg(t = τ)〉 =
∫

d3p exp

(−iτp2

2Mh̄

)
φg(�p)| �p〉 ⊗ |α exp(−i�(�p)τ)〉, (31)

where

�(�p) = |κ̂|2
�(�p)

, �(�p) = ωc −
(

ωeg +
�q · �p
M

+
q2h̄

2M

)
. (32)

The Doppler shift detuning is independent of the gravitational field. The second, in the limit
of long times, t � τa , the atom is accelerated by Earth’s gravity so that its velocity increases
and the Doppler shift detuning in (13) depends on the gravitational field.

4. The QND measurement of atomic momentum

The QND measurement has been the subject of numerous investigations in the past two decades
[26–34]. In a QND measurement the measurement-assisted perturbation of the system does
not affect the observable that is desired to be determined, but is confined to other quantities.
For such a measurement on a given system, the system must be coupled to another system
(called probe), and an appropriately selected probe observable must be monitored during
the measurement. The system–probe interaction has to be chosen in such a way that the
corresponding interaction Hamilton commutes with the system observable. The interaction
of radiation with a single atom involves both the electronic degrees of freedom and centre-
of-mass degrees of freedom of atom. The interaction of a two-level atom with a standing
laser field wave can result in a QND measurement of the atomic position. In [33] it has
been shown that the position of an atom passing through a standing light wave is localized
by making a quadrature phase measurement on the (sufficiently detuned) light field. This
localization can be thought of as the creation of a virtual slit (or slits) for the atom by the field
measurement. Moreover, it has been demonstrated [34] that one can measure the distribution
of the transverse position of an atom crossing one or more optical cavities by monitoring the
phase of the standing wave fields in the cavities. It has been shown that in the Kapitza–Dirac
regime the method represents a QND measurement of the atomic position, and it can be applied
to prepare narrow distributions of the transverse atomic position.

In the previous section we showed that how the gravitational field may affect the dispersive
Jaynes–Cummings model. In this section we investigate the influence of gravitational field
on the QND measurement of atomic momentum. The Hermitian quadrature phase operator
Ŷ = (â+â†)

2 is used as a probe observable for a QND measurement of conjugate momentum �̂p
since the Hamiltonian (17) satisfies the set of conditions: ˆ̃H = ˆ̃H( �̂p), [ ˆ̃H, �̂p] = 0, [ ˆ̃H, Ŷ ] = 0.
The probability for obtaining value Y for the quadrature phase Ŷ may be expressed as

P(Y ) dY = dY

∫
dp|φg(�p)|2|〈Y |α exp(−i�(�p, �g)τ)〉|2. (33)
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Figure 1. The momentum filter G(�p) = |〈Y |α exp(−i�(�p, �g)τ)〉|2 as a function of p
h̄q

that results

a readout Y = 0. Here ( κ
δ
)2τωrec = 0.2, τωrec = 7.2, κτ = 140, α = 2, q = 107 m−1, M =

10−26 kg, g = 9.8 m s−2. (a) τ = 14.4 × 10−6 s, (b) τ = 14.4 × 10−5 s, (c) τ = 14.4 × 10−4 s
and (d) τ = 14.4 × 10−3 s.

The momentum distribution after a readout Y is given by the conditional probability P(�p|Y )

that the atom has a momentum vector �p:

P(�p|Y ) = |φg(�p)|2|〈Y |α exp(−i�(�p, �g)τ)〉|2P(Y )−1, (34)

where we assume

φg(�p) = 1√
2πσ0

exp

(−p2

σ 2
0

)
. (35)

Straightforward calculation results in

〈Y |α exp(−i�(�p, �g)τ)〉 =
(

2

π

) 1
4

exp(−[|α| cos(�(�p · �g)τ − ϕα) − Y ]2)

− 2i|α|Y sin(�(�p, �g)τ − ϕα). (36)

The momentum filter after a readout Y is defined as G(�p) = |〈Y |α exp(−i�(�p, �g)τ)〉|2 with
α = |α| exp(iϕα).

In figures 1(a) and 2(a), respectively, we have plotted the momentum filter
|〈Y |α exp(−i�(�p, �g)τ)〉|2 and the momentum distribution P(�p|Y = 0) as the functions
of p

h̄q
and for Y = 0. In these figures we have assumed

(
κ
δ

)2
τωrec = 0.2, τωrec = 7.2, κτ =

140, α = 2, q = 107 m−1,M = 10−26 kg, g = 9.8 m s−2, τ = 14.4 × 10−6 s, σ0 = 1
and ϕα = �(0)τ + π

2 [11, 20]. Here we consider a beam of two-level atoms in the
ground state with φg(�p) given by (35) traversing in horizontal direction with the momentum
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Figure 2. Momentum distribution after a readout Y = 0 has been detected. All parameters are the
same as in figure 1. (a) τ = 14.4 × 10−6 s, (b) τ = 14.4 × 10−5 s, (c) τ = 14.4 × 10−4 s and (d)
τ = 14.4 × 10−3 s.

vector �p of an optical cavity in the presence of gravitational field so that �p · �g = 0 and
�p · �q = pq cos θ, �q · �g = qg sin θ , where θ is the angle between �q and �p, and π

2 − θ is the
angle between �q and �g. Before a given atom passes through the cavity, the cavity mode is
prepared in the coherent state. After the atom passes through, its momentum is determined
by a measurement of the cavity field. In figures 1(b)–(d) and 2(b)–(d), respectively, we
plot the momentum filter and momentum distribution with respect to p

h̄q
and for different

times. These figures clearly show the influence of the gravitational field on the momentum
filter and momentum distribution when the time increases. Furthermore, in figures 2(a)–(d)
one can see oscillations. These oscillations result from quantum interference of translation
motion with θ = π

4 [25]. To estimate the spacing of momentum for small �p, we expand

�(�p) � �(0) +
(

κ
δ−�q·�gτ

)2 �q· �p
M

and obtain

��p = |�pn+1 − �pn| = h̄q
π

2

(
δ − �q · �gτ

κ

)2 1

ωrecτ
. (37)

The slow variation of ��p in figures 1(a)–(d) is due to the nonlinearity of �(�p, �g), which leads
to a decreasing tooth spacing for increasing momenta. In a simple Gaussian approximation,
the width of the teeth near p = 0 is given by

σ = h̄q
1

4|α|
(

δ − �q · �gτ

κ

)2 1

ωrecτ
. (38)

From (37) and (38) one can see that the gravitational field decreases both ��p and σ .
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5. Summary and conclusions

In this paper we have investigated the influence of the gravitational field on the dynamical
behaviour of the dispersive JCM as well as on the QND measurement of atomic momentum.
For this purpose, based on an su(2) algebraic structure, as the dynamical symmetry group
of the model, we have derived an effective Hamiltonian describing the dispersive atom–
field interaction in the presence of gravitational field. By finding an explicit form for the
corresponding time evolution operator, we have explored the influence of gravity on the atom–
field coupling and detuning parameter. We have shown that due to the gravitational field
the atomic transition frequency experiences a Doppler shift and atom–field coupling becomes
time dependent. Then we have investigated the influence of gravitational field on the QND
measurement of atomic momentum in the dispersive JCM. We have shown that the gravitational
field decreases both tooth spacing of momentum and the tooth width of momentum.
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